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Q: What is a filter?

A: Filters pass some things,

don’t pass other things

Examples:
Oil
Air
Water
Optical
Electrical   ☺



Electrical filter examples:

Receiver R.F. bandpass filters
Receiver I.F. bandpass filters
Audio filters

Lowpass
Bandpass

Diplexers
Harmonic (and ‘TVI’) lowpass
Filters for Field Day   ☺



Some definitions

Passband:
The frequency range that we want to pass
with some minimal attenuation

Stopband:
The frequency range that we want to reject
to some extent



A  lowpass filter  response plot:

It passes low frequencies



A  highpass  filter response plot:

It passes high frequencies



A bandpass filter response plot:

It  passes a band  of frequencies      ☺



A bandstop filter response plot:

It   rejects a band  of frequencies
Also called  bandstop or, if narrow, a notch filter



Filter order

Here we see the magnitude responses of filters with orders 2
to 10



More complicated filters – those of a higher order – descend
into the stopband  at a greater rate.

We’ll look at  order  later . . .



FILTER FAMILIES

There is no single “best” way to develop the parts values for
a filter.

Examples of the tradeoff areas:
Smoothness of passband response
Sharpness of cutoff at bandedge
Ultimate attenuation in the stopband
Uniformity of time delay

Those areas are set by the “family” – the name of the
mathematician who devised a particular design procedure.

Let’s look at some of the common families.



The Butterworth family

A Butterworth filter response example

It has a smooth passband and is also known as a Maximally
Flat Gain or Maximally Flat Magnitude filter.

It has a moderate shape factor



The Chebyshev family

We can get a better shape factor, a sharper descent into the
stopband by allowing some magnitude ripple in the
passband.  This is done by using the Chebyshev family.

The plot (#1) showing the gentler cutoff is of a filter from the
Butterworth filter.  The plot (#2) showing the sharper cutoff is
of a filter from the Chebyshev family;  it has some moderate
magnitude ripples in the passband.



Here we are looking in detail at the passband and so we can
see the smooth Butterworth filter (#1) magnitude plot and
also the “ripply” Chebyshev magnitude plot (darker blue, with
its sharper cutoff rate).

By allowing some passband ripple we can descend into the
stopband at a somewhat greater rate.



The Cauer family

We can get an  even steeper  descent into the stopband by
adding to the design some  “traps”  whose frequencies are
carefully calculated.  This is done by using the  Cauer
family.

Chebyshev filter (#1) and a Cauer filter traps in stopband



Time delay

The signal going through a filter encounters a delay.  This
delay is generally greater at the bandedge(s).



Here we see the magnitude and time delay plots of a
Chebyshev filter (ripple in the passband, sharp cutoff)



If a uniform time delay for signals throughout the passband
is needed then the Bessel filter family should be selected



Here we see the magnitude response (blue) and time delay
(red) of a  Bessel  filter:

Time delay (red) is rather constant.
Magnitude response (blue) is rather poor

(terrible, actually ☺ ).



Transient response

Some applications require that a squarewave or other
“digital” signal applied to the input of a lowpass design have
a minimum overshoot as seen at the output.

Sharp cutoff filters make the signal appear to “ring” when
you observe them with an oscilloscope.

IMHO “Morse code” is a digital signal.



This is the appearance of a squarewave as it exits from a
sharp-cutoff  (Chebyshev)  lowpass filter:

The squarewave is about 5% of filter cutoff frequency.

Bessel filters are relatively free of this problem.



This is the appearance of a squarewave as it exits from a
Bessel lowpass filter.

The squarewave fundamental is about 10% of the filter cutoff
frequency.



All of the traits mentioned so far apply to a filter regardless of
how it is implemented:

• Using inductors and capacitors (“lumped element”)

• Using opamps with resistors and capacitors (“active”).

• Using microstrip or transmission lines

• Using Digital signal processing  (DSP)

In general they are also true if the filter is implemented using
other technologies; some DSP schemes behave differently.

For this little chat we’ll ignore those “other” technologies and
stick with filters made out of inductors and capacitors.  They
are called “Lumped Element” networks.



LUMPED-ELEMENT FILTERS:

LOWPASS

Let’s look at filters fabricated using discrete inductors and
capacitors, (which gives rise to their name of lumped-
element).  The basic idea behind filters built using inductors
and capacitors is shown here:

Illustrating the concept of a  lowpass  filter.

Elementary lowpass filter formed using a series inductor (a)
and an elementary lowpass filter formed using a shunt
capacitor (b).



Highpass

A highpass filter passes signal above its cutoff frequency
and attenuates those below.  The basic idea behind the
highpass filter is shown here:

Elementary highpass formed using (a) a series capacitor and
(b) a shunt inductor

In each case, signals above the cutoff are passed with
minimum attenuation while signals below the cutoff are
attenuated, in a manner similar to the action of a lowpass
filter.



Filter order

“Order” refers to the number of   branches   in a filter.

Next we will see examples with  3,  4,  and 5  branches.



Here we see lowpass filters with orders of 3, 4 and 5.



LOWPASS TO BANDPASS
TRANSFORM

A lowpass design is defined (in part) by specifying a
bandwidth.

A  bandpass  design can be defined in part by specifying a
bandwidth and also a  center frequency.

Then it can be converted from a lowpass to a bandpass by
the simple expedient of resonating each of the elements to
the filter’s center frequency.  There are sometimes problems
with this simplistic approach but in general it is valid.

Next we will see a lowpass filter and right below it is a
bandpass filter made from it.



Top: a lowpass with a bandwidth of 2 MHz
Bottom: resonating the parts results in a bandpass



That filter has a bandwidth of 2 MHz centered on 2.8 MHz.
The L-C pairs are resonated at that center frequency.

The magnitude response plot of this kind of bandpass filter is
symmetrical on a frequency scale that is logarithmic.
Rephrased:  the magnitude response of that filter is
geometrically-symmetrical about its center.

Bandpass filter response plot resulting from that classic
lowpass-to-bandpass conversion.



REFINEMENTS IN BANDPASS
DESIGN

That classic textbook method of transforming a lowpass to a
bandpass, while simple, yields awkward-value components
in the case of a narrowband bandpass filter.

This situation can be avoided by using various
manipulations.   They are tedious to do manually and so are
best done using a computer.



If we design a bandpass centered at 3 MHz with a width of
100 kHz using this method, we get a filter with awkward
parts values shown here:

Narrowband filter from simple transform

Some of the L and C values are very large or small.



A better approach is to change the topology to a
nodal-capacitor-coupled design:

More practical but:
• the shunt capacitors’ values are large for the center

frequency of 3 MHz.
• the inductors are small in value.



We can dramatically improve both of those problems by
scaling the impedance of the filter upward.

This is done by designing the filter with a specified
impedance of, say, 500 ohms instead of the usual 50 ohms.



Such a higher-impedance version of the filter looks like this:

We have changed the inductors to exactly 1 uH.  Now the
other component values are quite satisfactory  but they are
for a 565.49-ohm filter   ����     We want it to work in a 50-
ohm system.



So how do we make it work in a 50 ohm system?  By
impedance matching.    Here is the result of matching:

To match that  565.45  ohm filter to  50  ohms we added
some capacitors at the input and output.

This is the kind of topology used in a radio receiver in its
preselector in the front end, or in its I.F. system or anywhere
else that a  narrow   (percentage-wise)  filter is needed.



An interesting thing happens when the bandwidth of that
filter is increased significantly.   The response becomes
lopsided as seen here:



By using couplng   inductors   the schematic looks like this:



Different topologies, different shapes to the responses,
Different component counts (capacitors vs inductors)



Component values

When a filter is designed “by the book” as shown so far, the
component values will invariably be uncommon.

The nearest 5% values can sometimes be substituted but it
is always wise to analyze the resulting response using a
computer.



EFFECT OF COMPONENT Q

When components with less-than-ideal characteristics are
used to fabricate a filter, the performance will also be less
than ideal.  One such item to be concerned about is
component “Q.”

Low-Q components cause a loss in the filter and they also
cause the edges to become “rounded.”



Here we see the effect of inductor Q values on a lowpass
filter.



Effect of inductor Q values on a moderately narrow
bandpass:



SIDE EFFECTS OF PASSBAND
RIPPLE

Especially in radio frequency (RF) applications it is desirable
to design a filter such that the impedance seen looking into
the input side remains fairly constant over the passband.

Passband ripple, VSWR and return loss shown together.



Choosing a family

When you want the flattest possible magnitude response, no
ripple at all in the passband, choose the Butterworth family.
The resulting magnitude response will also have a relatively
gentle corner from passband into the stopband.



When a lowpass filter with constant time delay throughout
the passband is needed then the Bessel family should be
used.

The magnitude response is quite poor, having a rolloff rather
than a sudden cutoff at the bandedge.



When a sharper cutoff is needed then choose the
Chebyshev family.

A small amount of ripple must be allowed in the passband.
More allowed ripple yields better rate of descent into the
stopband.



When steepness of descent from passband into stopband is
the item of greatest importance, then the Cauer filter family
is used.

Cauer filters involve a more complicated set of choices.  In
addition to selecting a passband ripple the designer must
also assign a stopband depth (or stopband frequency).
Some of these items interact; they can’t all be selected
arbitrarily.
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OPTIMIZED HARMONIC FILTERS

Lowpass filters should be placed at the output of transmitters

These are commonly designed to pass a single amateur
band and provide attenuation at harmonics of that band
sufficient to meet the requirements.



The basic approach is to use a computer to optimize the
performance in the passband (a single amateur band) while
simultaneously maximizing the attenuation at the second
and third harmonic of that same band.  When this is done
the higher harmonics will also be well within spec.



The schematic of this filter along with parts values for the 3.5
to 4.0 MHz amateur band is shown here:



Responses of the filter shown:



Component values for the 160-meter through the 6-meter
amateur bands are shown in the following table.  The
capacitors are shown in pF and the inductors in uH.  The
capacitors are the nearest 5% values; both the nearest 5%
and the exact inductor values are shown.

L2 L2 L4 L4
Band: C1: 5%: Exact: C2: C3: 5%: Exact: C4: C5:

160m 2400 3.0 2.88 360 4700 2.4 2.46 820 2200
80m 1300 1.5 1.437 180 2400 1.3 1.29 390 1100
60m 910 1.0 1.029 120 1600 0.91 0.8897 270 750
40m 680 0.75 0.7834 91 1300 0.62 0.6305 220 560
30m 470 0.56 0.5626 68 910 0.47 0.4652 160 430
20m 330 0.39 0.3805 47 620 0.33 0.3163 110 300
17m 270 0.30 0.3063 36 510 0.27 0.2617 82 240
15m 220 0.27 0.2615 30 430 0.22 0.2245 68 200
12m 200 0.24 0.241 27 390 0.20 0.2042 62 180
10m 180 0.20 0.2063 24 330 0.18 0.1721 56 150
6m 91 0.11 0.108 13 180 0.091 0.0911 30 82

Values for the optimized harmonic filters

Using the nearest-5% inductor values will result in
satisfactory operation.  If the construction method is such
that exact-value (i.e., adjustable) inductors can be used then
the “Exact” values are preferred.  These values were
obtained from the program “SVCfilter.”



FILTER DESIGN AND ANALYSIS
SOFTWARE

The following programs have both design and analysis
capability:

Elsie – www.tonnesoftware.com

AADE Filter Design And Analysis – www.aade.com


