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Q: What is a filter?

A: Filters pass some things, 
don’t pass other things

Examples:
Oil
Air
Water
Optical
Electrical   



Electrical filter examples:

Receiver R.F. bandpass filters
Receiver I.F. bandpass filters
Audio filters

Lowpass
Bandpass

Diplexers
Harmonic (and ‘TVI’)   (lowpass)
Filters for Field Day   (bandpass)    



Some definitions
Passband:
The frequency range that we want to pass 
with some minimal attenuation

Stopband:
The frequency range that we want to reject 
to some extent



A  lowpass filter  response plot:

It passes low frequencies



A  highpass  filter response plot:

It passes high frequencies



A bandpass filter response plot:

It  passes a band  of frequencies      



A bandstop filter response plot:

It   rejects a band  of frequencies
Also called  bandstop or, if narrow, a notch filter

 



Filter order

Here we see the magnitude responses of filters with orders 2 
to 10



More complicated filters – those of a higher order – descend 
into the stopband  at a greater rate.

We’ll look at  order  later . . .



 

FILTER FAMILIES

There is no single “best” way to develop the parts values for 
a filter.

Examples of the tradeoff areas:
Smoothness of passband response
Sharpness of cutoff at bandedge
Ultimate attenuation in the stopband
Uniformity of time delay 
Uniformity of input impedance

Those areas are set by the “family” – the name of the 
mathematician who devised a particular design procedure.

Let’s look at some of the common families.



The Butterworth family

A Butterworth filter response example

It has a smooth passband and is also known as a Maximally 
Flat Gain or Maximally Flat Magnitude filter.

It has a moderate shape factor



The Chebyshev family

We can get a better shape factor, a sharper descent into the 
stopband by allowing some magnitude ripple in the 
passband.  This is done by using the Chebyshev family. 
 

The plot (#1) showing the gentler cutoff is of a filter from the 
Butterworth filter.  The plot (#2) showing the sharper cutoff is 
of a filter from the Chebyshev family;  it has some moderate 
magnitude ripples in the passband.



Here we are looking in detail at the passband and so we can 
see the smooth Butterworth filter (#1) magnitude plot and 
also the “ripply” Chebyshev magnitude plot (darker blue, with 
its sharper cutoff rate).

By allowing some passband ripple we can descend into the 
stopband at a somewhat greater rate.



The Cauer family 

We can get an  even steeper  descent into the stopband by 
adding to the design some  “traps”  whose frequencies are 
carefully calculated.  This is done by using the  Cauer  
family. 

Chebyshev filter (#1) and a Cauer filter with its "traps" in the 
stopband



Time delay

The signal going through a filter encounters a time delay.  
This delay is generally greater at the bandedge(s).



Here we see the magnitude and time delay plots of a 
Chebyshev filter (ripple in the passband, sharp cutoff)



If a uniform time delay for signals throughout the passband 
is needed then the Bessel filter family should be selected



Here we see the magnitude response (blue) and time delay 
(red) of a  Bessel  filter:

Time delay (red) is rather constant.  

Magnitude response (blue) is rather poor 
(terrible, actually  ).



Transient response

Some applications require that a squarewave or other 
“digital” signal applied to the input of a lowpass design have 
a minimum overshoot as seen at the output.  

Sharp cutoff filters make the signal appear to “ring” when 
you observe them with an oscilloscope.  

“Morse code” should be considered to be a digital signal.



This is the appearance of a squarewave as it exits from a 
sharp-cutoff  (Chebyshev)  lowpass filter:

The squarewave is about 5% of filter cutoff frequency.

Bessel filters are relatively free of this problem.



This is the appearance of a squarewave as it exits from a 
Bessel lowpass filter.

The squarewave fundamental is about 10% of the filter cutoff 
frequency.



All of the traits mentioned so far apply to a filter regardless of 
how it is implemented:

 Using inductors and capacitors (“lumped element”)

 Using opamps with resistors and capacitors (“active”).  

 Using microstrip or transmission lines

 Using Digital signal processing  (DSP) 

In general they are also true if the filter is implemented using 
other technologies; some DSP schemes behave differently.

For this discussion we’ll ignore those “other” technologies 
and stick with filters made out of inductors and capacitors.  
They are called “Lumped Element” networks. 



LUMPED-ELEMENT FILTERS:
LOWPASS

Let’s look at filters fabricated using discrete inductors and 
capacitors, (which gives rise to their name of lumped-
element).  The basic idea behind filters built using inductors 
and capacitors is shown here:

Illustrating the concept of a  lowpass  filter.  

Elementary lowpass filter formed using a series inductor (a) 
and an elementary lowpass filter formed using a shunt 
capacitor (b).



Highpass

A highpass filter passes signal above its cutoff frequency 
and attenuates those below.  The basic idea behind the 
highpass filter is shown here:

Elementary highpass formed using (a) a series capacitor and 
(b) a shunt inductor

In each case, signals above the cutoff are passed with 
minimum attenuation while signals below the cutoff are 
attenuated, in a manner similar to the action of a lowpass 
filter.



Filter order
  
“Order” refers to the number of   branches   in a filter.

Next we will see examples with  3,  4,  and 5  branches.



Here we see lowpass filters with orders of 3, 4 and 5.



LOWPASS TO BANDPASS 
TRANSFORM

A lowpass design is defined (in part) by specifying a 
bandwidth.

A  bandpass  design can be defined in part by specifying a 
bandwidth and also a  center frequency.

Then it can be converted from a lowpass to a bandpass by 
the simple expedient of resonating each of the elements to 
the filter’s center frequency.  There are sometimes problems 
with this simplistic approach but in general it is valid.

Next we will see a lowpass filter and right below it is a 
bandpass filter made from it.



Top: a lowpass with a bandwidth of 2 MHz

Bottom: resonating the parts results in a bandpass



That filter has a bandwidth of 2 MHz centered on 2.8 MHz.
The L-C pairs are resonated at that center frequency.

The magnitude response plot of this kind of bandpass filter is 
symmetrical on a frequency scale that is logarithmic.
Rephrased:  the magnitude response of that filter is 

geometrically-symmetrical about its center.

Bandpass filter response plot resulting from that classic 
lowpass-to-bandpass conversion.



REFINEMENTS IN BANDPASS 
DESIGN

That classic textbook method of transforming a lowpass to a 
bandpass, while simple, yields awkward-value components 
in the case of a narrowband bandpass filter. 

This situation can be avoided by using various 
manipulations.   They are tedious to do manually and so are 
best done using a computer.  



If we design a bandpass centered at 3 MHz with a width of  
100 kHz using this method, we get a filter with awkward 
parts values shown here:

Narrowband filter from simple transform

Some of the L and C values are very large or small.

By "very small" here, take note of the shunt inductors.  An 
inch of wire (about 2.54 cm) is about 15 nanohenries.  That 
shunt inductor is about 4 inches of wire, about 10 cm.  Kind 
of small for a 3 MHz filter.



A better approach is to change the topology to a
nodal-capacitor-coupled design:

Perhaps somewhat more practical BUT:

 the shunt capacitors’ values are large for the center 
frequency of 3 MHz.  It is quite possible that a .o3 uF 
capacitor is self-resonant at 3 MHz, destroying its 
effectiveness.

 the inductors are still small in value, as discussed.



We can dramatically improve both of those problems by 
scaling the impedance of the filter upward.

This is done by designing the filter with a specified 
impedance of, say, 500 ohms instead of the usual 50 ohms.



Such a higher-impedance version of the filter looks like this:

 

We have changed the inductors to exactly 1 uH.  Now the 
component values are quite satisfactory  but they are for a 
565.49-ohm filter        

We want it to work in a 50-ohm system.

  



So how do we make it work in a 50 ohm system?  

By impedance matching.    

Here is the result of matching:

To match that  565.45  ohm filter to  50  ohms we added 
some capacitors at the input and output.

This is the kind of topology used in a radio receiver in its 
preselector in the front end, or in its I.F. system or anywhere 
else that a  narrow   (percentage-wise)  filter is needed.



An interesting thing happens when the bandwidth of that 
filter is increased significantly.   The response becomes 
lopsided as seen here:

Notice, please, that this oddity happens only when the 
bandwidth is significant in terms of percentage, as shown 
here.



By using couplng   inductors   the schematic looks like this:



Different topologies, different shapes to the responses,
Different component counts (capacitors vs inductors)

 



Component values
When a filter is designed “by the book” as shown so far, the 
component values will invariably be uncommon.  The 
component vendors won't be able to supply 654.906 nH 
inductors nor will they be to supply 3350.63 pF capacitors.

The nearest 5% values can sometimes be substituted but it 
is always wise to analyze the resulting response using a 
computer.  Or use a program to substitute the nearest 5% 
values and "see what happens."
 



EFFECT OF COMPONENT Q

When components with less-than-ideal characteristics are 
used to fabricate a filter, the performance will also be less 
than ideal.  One such item about which we should be 
concerned is component “Q.” 

Low-Q components cause a loss in the filter and they also 
cause the edges to become “rounded.”



Here we see the effect of inductor Q on a lowpass filter as 
we vary the inductor Q values from high (upper plot) to low 
(bottom plot).



Effect of inductor Q values on a moderately narrow 
bandpass, same situation.  Band edges are most affected 
but midband loss also takes a hit as inductor Q is reduced:



SIDE EFFECTS OF PASSBAND 
RIPPLE

Especially in radio frequency (RF) applications it is desirable 
to design a filter such that the impedance seen looking into 
the input side remains fairly constant over the passband.  

Passband ripple, VSWR and return loss shown together. 

As the passband ripple specification is increased, both the 
input VSWR and return loss degrade.  If those latter items 
are of importance it follows that a low-ripple design should 
be used.



Choosing a family 

When you want the flattest possible magnitude response, no 
ripple at all in the passband, choose the Butterworth family.
The resulting magnitude response will also have a relatively 
gentle corner from passband into the stopband.  



When a lowpass filter with constant time delay throughout 
the passband is needed then the Bessel family should be 
used.  

The magnitude response is quite poor, having a rolloff rather 
than a sudden cutoff at the bandedge.



When a sharper cutoff is needed then choose the 
Chebyshev family.  

A small amount of ripple must be allowed in the passband.
More allowed ripple yields better rate of descent into the 
stopband.

Remember the earlier comment about input VSWR and 
return loss being affected by the ripple specification.



When steepness of descent from passband into stopband is 
the item of greatest importance, then the Cauer filter family 
is used.  

Cauer filters involve a more complicated set of choices.  In 
addition to selecting a passband ripple the designer must 
also assign a stopband depth (or stopband frequency).  
Some of these items interact; they can’t all be selected 
arbitrarily.  

:

:

:

:

:

:

:

:

:

:



OPTIMIZED HARMONIC FILTERS

Lowpass filters should be placed at the output of radio 
transmitters

These are commonly designed to pass a single band and 
provide attenuation at harmonics of that band sufficient to 
meet the regulatory requirements.  



The basic approach is to use a computer to optimize the 
performance in the passband (a single amateur band) while 
simultaneously maximizing the attenuation at the second 
and third harmonic of that same band.  When this is done 
the higher harmonics will also be well within spec.

The schematic of this filter along with parts values for the 3.5 
to 4.0 MHz amateur band is shown here:



VSWR and magnitude responses of the filter shown:



Component values for the 160-meter through the 6-meter 
amateur bands are shown in the following table.  The 
capacitors are shown in pF and the inductors in uH.  The 
capacitors are the nearest 5% values; both the nearest 5% 
and the exact inductor values are shown.  

L2 L2 L4 L4
Band: C1: 5%: Exact: C2: C3: 5%: Exact: C4: C5:

160m 2400 3.0 2.88 360 4700 2.4 2.46 820 2200
80m 1300 1.5 1.437 180 2400 1.3 1.29 390 1100
60m 910 1.0 1.029 120 1600 0.91 0.889 270 750
40m 680 0.75 0.783 91 1300 0.62 0.631 220 560
30m 470 0.56 0.563 68 910 0.47 0.462 160 430
20m 330 0.39 0.381 47 620 0.33 0.316 110 300
17m 270 0.30 0.306 36 510 0.27 0.262 82 240
15m 220 0.27 0.262 30 430 0.22 0.225 68 200
12m 200 0.24 0.241 27 390 0.20 0.204 62 180
10m 180 0.20 0.206 24 330 0.18 0.172 56 150
6m 91 0.11 0.108 13 180 0.091 0.091 30 82

Values for the optimized harmonic filters

Using the nearest-5% inductor values will result in 
satisfactory operation.  If the construction method is such 
that exact-value (i.e., adjustable) inductors can be used then 
the “Exact” values are preferred.  These values were 
obtained from the program “SVCfilter.” 



FILTER DESIGN AND ANALYSIS 
SOFTWARE

The following programs have both design and analysis 
capability:

Elsie – www.  T  onne  S  oftware.com

AADE Filter Design And Analysis – www.aade.com

http://www.tonnesoftware.com/
http://www.aade.com/
http://www.tonnesoftware.com/
http://www.tonnesoftware.com/
http://www.tonnesoftware.com/
http://www.tonnesoftware.com/

