THE WIZARD

This is the manual for
the Wizard routine in Meter, the program to draw scales
for analog meter movements

Opening

When the program Meter is opened, we see the Opening screen:

Clicking on the Use the Design Wizard button (shown here highlighted) will take us directly to the Wizard. That routine has been designed to simplify the design process and minimize confusion about the various required entries by asking for only one input at a time. And an illustrative graphic accompanies that input to clarify which item is being requested.

Plate width

At the start of the Wizard we see this first screen, asking us to enter the width of the plate:

Design Wizard - Part 1

Measure the width of the plate in millimeters, enter that number into the textbox and then click on the Enter button.

All entries in the Wizard are run through a series of tests as appropriate when the associaed Enter button is pressed. If the entry is deemed satisfactory then it will be written back into the box and the next item in the list of requested entries will be shown.

If the entry is not satisfactory then a message box will pop up with instructions telling us what to do. The text box will be cleared of the erroneous entry and the program will await a correct entry.

Some entries accept the value of zero as being satisfactory and so clicking Enter on an empty textbox will simply result in the digit 0 being placed in the box and the next item will be requested.

Here we have entered a plate width of 60 millimeters. Pressing the Enter button will take us to the next entry.

Plate Height

After entering the plate width we next enter the plate height:

Measure the height of the plate in millimeters, enter that number into the textbox and then click on the Enter button.

Here we have entered a plate height of 50 millimeters. Pressing the Enter button will take us to the next entry.

Bottom to bearing

After entering the plate height we next enter the distance from the plate bottom to the bearing:

Design Wizard - Part 1

Measure and enter the distance from the plate bottom $u p$ to the bearing, in mm.

Measure the distance from the bottom of the plate to the bearing in millimeters and enter that number into the textbox and click on the Enter button.

Here we have entered a distance of 10 millimeters. Pressing the Enter button will take us to the next entry.

Bottom to mounting

After entering the distance from plate bottom to the bearing we next enter the distance from the plate bottom to the plate mounting holes:

Design Wizard - Part 1

Measure and enter the distance from the plate bottom up to the mounting holes, in mm.

Measure the distance from the bottom of the plate to the mounting holes in millimeters and enter that number into the textbox and click on the Enter button.

Here we have entered a distance of 10 millimeters. Pressing the Enter button will take us to the next entry.

Hole separation

After entering the distance from plate bottom to the mounting holes we next enter the distance between the mounting holes：

Yeter－Deshes Wizard Part 1

Design Wizard－Part 1

Measure and enter the mounting hole separation，in mm， typically 20 to plate width（60）max．

VOLTS

申

Measure the distance between the two mounting holes，in millimeters，enter that number into the textbox and click on the Enter button．

Here we have entered a separation of 45 millimeters．Pressing the Enter button will take us to the next entry．

Pointer deflection

After entering the distance between the two mounting holes we next enter the angular deflection of the pointer:

Yeter - Deshes Wizard Part 1
 Design Wizard - Part 1

Plate width, mm: Plate height, mm:	60	Enter
	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter

Measure and enter the pointer deflection in degrees.
Common values are 90 and 100 .

\nmid

Measure the angular deflection of the pointer, in degrees, and enter that number into the textbox. Typical values are 90 and 100 degrees. Click on the Enter button.

Here we have entered an angle of 100 degrees. Pressing the Enter button will take us to the next entry.

Actual－virtual offset

After entering the pointer deflection we enter an arbitrary number we call the ＇Actual－virtual offset＇．This sets the shape of the arc and may be adjusted from zero up to perhaps the height of the plate．

Design Wizard－Part 1

Enter a value for the Actual／Virtual offset，in mm．Enter 0 if for an＇old－fashioned＇design or if you don＇t know the value．For a modern design a typical value would be about half the plate height（i．e．，25）．

VOLTS

Enter a value of 0 for an＇old style＇meter or some value on up to a maximum of the plate height，as shown in the suggested－value information，for a＇modern＇design．This is in fact the distance in millimeters from the actual bearing down to an imaginary center for the arc as shown in the illustration．Typical values are about .4 to .8 times the plate height．Enter your value（it can be changed later）and then click on the Enter button．

Here we have entered a value of 25 ．Pressing the Enter button will take us to the next entry．

Major tic length

After entering the actual-virtual offset we enter the length of the major (longer) ticmarks:
Yekter - Desipn Wizard Part 1

Plate width, mm:	60	Enter
Plate height, mm:	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter
Actualvirtual offset, mm:	25	Enter
Major tic length, mm:	3	Enter

Enter a value for the Major tic length, in mm. A suggested value is 3

\&

Enter the length of the major ticmarks in millimeters and then click on the Enter button.
Here we have entered a value of 3; decimal fractions are allowed. Pressing the Enter button will take us to the next entry.

Minor tic length

After entering the major tic length we enter the length of the minor (shorter) tics:
Yever-Desipn Wizard Part 1

Plate width, mm:	60	Enter
Plate height, mm:	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter
Actualvirtual offset, mm:	25	Enter
Major tic length, mm:	3	Enter
Minor tic length, mm:	2	Enter

Enter a value for the Minor tic length, in mm. A suggested value is 2 . This cannot be greater than the major tic length.

\nmid

Enter the length of the minor tics in millimeters and then click on the Enter button.
Here we have entered a value of 2 . The length of these tics must be equal to or less than the major tics.

Press the Enter button to go to the next entry.

Major tic width

After entering the minor tic length we enter the width of the major tics:

Pexter - Dexipo Wizard Part 1		
Plate width, mm: Plate height, mm:	60	
	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter
Actualvirtual offset, mm;	25	Enter
Major tic length, mm:	3	Enter
Minor tic length, mm:	2	Enter
Major tic width, tenths of mm:	4	Enter

Enter a value for the Major tic width, in tenths of a mm. A suggested value is 4 .

\&

Enter the width of the major tics in tenths of millimeters and then click on the Enter button.

Here we have entered a value of 4 (this is tenths of a mm).
Press the Enter button to go to the next entry.

Minor tic width

After entering the major tic width we enter the width of the minor tics:

Design Wizard - Part 1

Plate width, mm:	60	Enter
Plate height, mm:	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter
Actualvirtual oHset mm:	25	Enter
Major tic length, mm:	3	Enter
Minor tic length, mm:	2	Enter
Major tic width, tenths of mm;	4	Enter
Minor tic width, tenths of mm:	2	Ent

Enter a value for the Minor tic width, in tenths of a mm. A suggested value is 2 . This cannot be greater than the width for the major ties.

\&

Enter the width of the minor tics in tenths of millimeters and then click on the Enter button.

Here we have entered a value of 2 (tenths of a mm).
Press the Enter button to go to the next entry.

Arc thickness

After entering the minor tic width we enter the thickness (width) of the arc:
Yekter - Deston Wizard Part 1

Plate width, mm:	60	Enter
Plate height, mm:	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter
Actualvirtual offset, mm:	25	Enter
Major tic length, mm:	3	Enter
Minor tic length, mm:	2	Enter
Major tic width, tenths of mm:	4	Enter
Minor tic width, tenths of mm:	2	Enter
Are thickness, tenths of mm:	2	Enter

Enter a value for the thickness of the are, in tenths of a mm . A suggested is a value of 2 .

$$
\notin
$$

Enter the thickness of the arc in tenths of millimeters and then click on the Enter button.
Here we have entered a value of 2 (tenths of a mm).
Press the Enter button to go to the next entry.

Bottom to scale ceiling

After entering the arc thickness we enter the distance from the plate bottom to the top of the scale arc (the ceiling):

Design Wizard - Part 1

[^0]Enter the distance from the plate bottom to the top of the scale arc in millimeters and then click on the Enter button.

Here we have entered a value of 34 .
Press the Enter button to go to the next entry.

Font size

After entering the distance from the scale bottom to the arc ceiling we enter the size of the font:

Design Wizard - Part 1

Plate width, mm:	60	Enter
Plate height, mm:	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer defliection, degrees:	100	Enter
Actualvirtual offset mm:	25	Enter
Major tic length, mm:	3	Enter
Minor tic length, mm:	2	Enter
Major tic width, tenths of mm:	4	Enter
Minor tic width, tenths of mm;	2	Entor
Are thickness, tenths of mm:	2	Enter
Bottom to scale celing, mm:	34	Enter
Font size for tiemark labels:	8	Enter

Enter a value for the Font size, in points. A suggested value is 8 .

\nmid

Enter the font size (this is approximately in 'points') and then click on the Enter button.
Here we have entered a value of 8 .
Press the Enter button to go to the next entry.

Label to arc spacing

After entering the font size for a scale we next enter the spacing between the arc and the ticmark labels：

Design Wizard－Part 1

Plate width，mm：	60	Enter
Plate height，mm：	50	Enter
Bottom to bearing，mm：	10	Enter
Bottom to mounting，mm：	10	Enter
Hole separation，mm：	45	Enter
Pointer deflection，degrees：	100	Enter
Actualvirtual oftset mm：	25	Enter
Major tic length，mm：	3	Enter
Minor tic length，mm；	2	Enter
Major tic width，tenths of mm：	4	Enter
Minor tic width，tenths of mm；	2	Entor
Are thickness，tenths of mm：	2	Enter
Bottom to scale celiling，mm：	34	Enter
Font size for tiemark labels：	8	Enter
Label to are spacing，mm：	6	Enter

Enter a value for the spacing between the are and the top of the ticmark labels，in mm．A suggested value is 6 ．

Enter the spacing between the arc and the top of the ticmark labels，in millimeters，and then click on the Enter button．

Here we have entered a value of 6 as suggested．
Press the Enter button to go to the next entry．

Bottom to top of title

After entering the spacing between the arc and the ticmark labels，we next enter the distance between the bottom of the plate and the top of the title：

Yeter－Deshon Wizard Part 1

Design Wizard－Part 1

 Enter a value for the distance from the plate bottom to
the top of the scale title，in mm．A bypical value would be about .5 times scale height i．e．， 25 mm

[^1]Enter the spacing between the bottom of the plate and the top of the title，in millimeters， and then click on the Enter button．

Here we have entered the suggested value of 33 as suggested．
The title may be placed beneath the arc and ticmarks or above them．
Press the Enter button to go to the next entry．

Number of ticmarks

After entering the spacing between the plate bottom and the top of the title, we next enter the number of ticmarks (there is no graphic for this entry):

Design Wizard - Part 1

Plate width, mm:	60	Enter
Plate height, mm:	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter
Actualvirtual oftset mm:	25	Enter
Major tic length, mm:	3	Enter
Minor tic length, mm;	2	Enter
Major tic width, tenths of mm:	4	Enter
Minor tic width, tenths of mm:	2	Enter
Are thickness, tenths of mm:	2	Enter
Bottom to scale ceiling, mm:	34	Enter
Font size for tiemark labels:	8	Enter
Label to arc spacing, mm:	6	Enter
Bottom to top of tive, mm:	28	Enter
Number of ticmarks:	50	Enter

Enter the number of ticmarks. Suggested values will be a minimum of 20 to a maximum of 60 . Then click on the Enter button.

Here we have entered a value of 50 .
Press the Enter button to go to the next entry.

Major tics every how many

After entering the number of ticmarks we must decide how often those ticmarks are to be changed to the major (large) type. (There is no graphic for this entry):

Design Wizard - Part 1

Plate width, mm:	60	Enter
Plate height, mm:	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter
Actualvirtual oHset mm:	25	Enter
Major tic length, mm:	3	Enter
Minor tic length, mm:	2	Enter
Major tic width, tenths of mm;	4	Enter
Minor tic width, tenths of mm;	2	Entor
Are thickness, tenths of mm:	2	Entor
Bottom to scale ceiling, mm:	34	Enter
Font size for tiemark labels:	8	Enter
Label to are spacing, mm:	6	Enter
Bottom to top of tite, mm:	28	Enter
Number of ticmarks:	50	Enter
Major tics every how many:	5	Enter

Enter how often the ticmarks are changed from minor (small) to major (large). Suggested value is 5 (every fifth ticmark will be a major type). Then click on the Enter button.

Here we have entered a value of 5 .
Press the Enter button to go to the next entry.

Accept the entries

You have entered all of the items needed for a basic scale design and this is the appearance of the screen:

Design Wizard - Part 1

Plate width, mm:	60	Enter
Plate height, mm:	50	Enter
Bottom to bearing, mm:	10	Enter
Bottom to mounting, mm:	10	Enter
Hole separation, mm:	45	Enter
Pointer deflection, degrees:	100	Enter
Actualvirtual ollset, mm:	25	Enter
Major tic length, mm:	3	Enter
Minor tic length, mm:	2	Enter
Major tic width, tenths of mm:	4	Enter
Minor tic width, tenths of mm;	2	Enter
Are thickness, tenths of mm:	2	Enter
Bottom to scale ceiling, mm:	34	Enter
Font size for ticmark labels:	8	Enter
Label to are spacing, mm:	6	Enter
Bottom to top of tite, mm:	25	Enter
Number of ticmarks:	50	Enter
Major tics every how many:	5	Enter

The fullscale value in units (volts, amps, etc.) has been set to the the number of ticmarks. You may change this later.
Accept and go to Part 2
Restart program

Hatar उIW

If you see an entry which was accepted by the program but you want to change it at this time, go ahead and place the new entry in the appropriate textbox. These boxes will be read once again when you click on the "Accept and go to Part 2" button. The various "Enter" buttons will remain greyed out.

Press the Accept and go to Part 2 button when it appears that the entries are reasonable.

Now at Part 2

You are now in the＂tuning＂phase of the Wizard and this is the appearance of the screen：

Design Wizard－Part 2

Most of your entries are shown at the left along with associated buttons with up and down arrows．Clicking on（or holding down）one of the arrows will step the associated entry up or down according to which arrow you pressed．

This is a fine time to use the Wizard to quickly see how various items behave or interact．Do this by simply clicking on the buttons to see what happens．The feedback is essentially instantaneous and so you can quickly gain a feel for the various items．

Some items，however，are not adjustable．Examples are the dimensions of the plate， the positions of the mounting holes and the location of the bearing．These are not negotiable and so don＇t have tuning buttons．

Press the Accept and preview button when you have adjusted these items to your satisfaction．This takes you to the main part of the program at which point you can make use of the toolbox in Meter to enhance this startup scale．

[^0]: Accept and go to Part 2 Restart program

[^1]: Accept and go to Part 2 Restart program

